Wave Review

1. Ocean swells were separated by 450 m and were coming every 12.5 sec . Find the wave speed. Find the wave speed.
2. Sonar waves produced by a dolphin move at $1560 \mathrm{~m} / \mathrm{s}$. Find the wavelength if the dolphin produces 45 waves in 1 sec .
3. The speed of sound is $344 \mathrm{~m} / \mathrm{s}$. A boy dropped a stone into a deep well and 10.4 sec later he heard a splash. How deep is the well?
4. The waves shown below are moving at $1 \mathrm{~m} / \mathrm{s}$ and will collide soon. Find the position of point A at $\mathrm{t}=1,2,3$, and 4 sec .

5. Draw the combined waveform after 3 sec .
6. A bee is humming along at $20 \mathrm{~m} / \mathrm{s}$ toward an observer who hears a hum of 300 Hz . What frequency would the observer hear if the bee were at rest?
7. Two police cars, each with sirens blaring at 600 Hz approach a pedestrian from opposite sides. How many beats does the pedestrian hear?

8. The pedestrian in \#7 now runs toward the slower car at $5 \mathrm{~m} / \mathrm{s}$. How many beats does he hear now?

Wave Review

9. A speaker system is playing 860 Hz out of speakers separated by 1.6 m . A listener 75 m away is at the central max.
a. How far must he walk to get from the $2^{\text {nd }}$ to the $3^{\text {rd }}$ max?
b. If he walks from the central max to $+\infty$ how many maximums will he hear (including central)?
c. How far apart are the $1^{\text {st }}$ maximums on opposite sides of the central max?
10. Use the same set-up as \#9 but now the frequency of the tone has changed so that the observer hears the $6^{\text {th }}$ max after walking 12 m from central. Find the wavelength and the frequency.
11. First max occurs at A. Find the wavelength and frequency.

