Simple Harmonic Motion

1. On Mars, a pendulum of length 90 cm makes 10 cycles in 26.1 sec . How much longer should the pendulum be if it is to only make 5 cycles in 26.1 sec?
2. A horizontal spring system has $\mathrm{k}=250 \mathrm{~N} / \mathrm{m}$ and a 5 kg mass attached. The mass is moving $4 \mathrm{~m} / \mathrm{s}$ when it is 20 cm to the right of the equilibrium position. Find
a. Total energy
b. $v_{\text {max }}$
c. amplitude
d. period
e. acceleration (magnitude and direction) when $x=. .3 \mathrm{~m}$
f. PE when $x=.15 \mathrm{~m}$
3. A 10 kg mass is attached to a spring and it stretches 40 cm . Then it is pulled down an additional 20 cm and released. Find
a. k
b. Time to get to highest point
c. Speed when 10 cm above equilibrium
4. An 800 g mass is placed on a spring. It is then stretched 40 cm to the right and released. 0.80 sec later it returns to the point of release. Find
a. k
b. $v_{\text {max }}$
c. acceleration when $x=0.25 \mathrm{~m}$
d. max acceleration
e. v when $x=30 \mathrm{~cm}$
5. A spring ($k=100 \mathrm{~N} / \mathrm{m}$) is used to propel a 0.2 kg mass up a hill.
a. If the spring is pulled back 25 cm , how high will the mass go?
b. If the mass needs to make it 10 m up the hill, how far back must the spring be pulled?

Pull back
h

