- 1. Write the decay equation
 - a. Sodium 24 decays by positron emission
 - b. Plutonium-244 decays by alpha emission
 - c. Carbon-14 becomes Nitrogen-14
 - d. Boron-9 becomes Berryllium-9
 - e. Protactinium-231 decays by alpha then beta then positron then alpha. Show the decay series.
- 2. Calculate the energy per decay for 1a and 1c
- 3. Find the binding energy in MeV.
 - a. Lithium-7
 - b. 0-15
 - c. 0.16
- 4. Find the binding energy in MeV/nucleon.
 - a. ¹³C
 - b. ¹⁴C
 - c. ¹⁵C
- 5. Half-life and radioactive decay.
 - a. If you have 0.02 g of Carbon-14, how long will it take for 0.001 g to remain?
 - b. Originally, a sample of ^{22}Na is 1.2×10^{13} atoms. How long until 3.4×10^{12} atoms of Na remain?
 - c. A scientist found 0.15g of a radioactive substance in his desk.
 25 days later, the mass of the sample was 0.12 g. Find the half-life.
 - d. A student found a sample of radioactive Na-24 with a mass of 0.102 μ g. However, a tag on the sample indicates that the original mass was 0.724 μ g. How old is the sample?
 - e. ²³⁸U eventually decays to Pb with a half-life of 4.5x10⁹ years. A scientist found the ration of Pb to U-235 in a sample to be 1.25 to 4. Find the age of the sample.