- 1. Consider an ¹⁶O nucleus. Find
 - a. Binding energy
 - b. BE per nucleon
 - c. Conpare the BE/nucleon to that of ¹⁸O
- 2. Write the nuclear equations.
 - a. ¹⁸N \rightarrow ⁺ β + _____
 - b. ¹⁹0 \rightarrow β + _____
 - c. ¹⁰⁹Ag $\rightarrow \alpha$ + ____
 - d. ${}^{14}C \rightarrow {}^{14}N +$ _____
 - e. ____ \rightarrow ²⁰N + ⁺ β
- 3. Find the energy release in 2a and 2b in MeV and Joules.
- 4. If 0.0001 g of ¹⁹O decays, what is the total energy released?
- 5. A canister originally contained 2x10⁶ atoms of tritium, ³H. How many atoms of the tritium would remain after 100 years?
- 6. A researcher had a sample of soudium-22. What fraction would remain after 21 years?
- 7. A geologist found a rock containing beryllium-10. The ration of boron-10 to beryllium-10 was 2.75 to 1. What is the age of the sample?
- 8. A scientist had 0.01 g of sodium-24.
 - a. Write the decay equation.
 - b. How much energy is released per decay?
 - c. What mass of sodium 24 remains after 40 hours?
 - d. How much energy was release during 40 hours?
 - e. What was the initial rate of decay in counts per second?