$$
\mathrm{F}=\mathrm{ma}
$$

1. A boy pushes on a 20 kg box with a force of 100 N .4 sec later it is moving at $8 \mathrm{~m} / \mathrm{s}$. Find the force of friction.

2. A 0.1 kg arrow is pushed with a force of 100 N through a distance of 40 cm .
a. Find the speed of the arrow as it leaves the bow.
b. How high would the arrow go if shot straight up?
3. A boy ($\mathrm{m}=50 \mathrm{~kg}$) pulls the wagon by pulling forward with a force of 280 N .
a. Find how far the system moves in 2 sec .
b. Find the tension in the rope.

4. Now in \#3 there is 80 N of friction between the ground and the wagon.
a. Find how far the system moves in 2 sec.
b. Find the tension in the rope.
5. The train pulls with a force of $10,000 \mathrm{~N}$. The engine has a mass of 1000 kg and each car is 500 kg . Find $\mathrm{a}, \mathrm{T}_{1}, \mathrm{~T}_{2}$, and T_{3}.

6. A boy pushes up on a box whose mass is 20 kg with a force of 250 N . Find the magnitude and direction of a.
7. In \#6, how hard should the boy push upward to produce an acceleration of
a. $1 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$ upward
b. $1 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$ downward
