Double Slit Interference

Assume speed of sound is $340 \mathrm{~m} / \mathrm{s}$

1. Two speakers are producing a sound of constant frequency and are separated by $\mathrm{d}=50 \mathrm{~cm}$. A student is walking along the dotted line from B to A. She hears a max at B then the sound fades as she hears a minimum at A. If the distance, L, is 120 cm and $\mathrm{D}=200 \mathrm{~cm}$, find the wavelength and frequency of the sound.

2. Repeat \#1 but there is a max at $A, L=100 \mathrm{~cm}, \mathrm{D}=300 \mathrm{~cm}$ and $\mathrm{d}=50$ cm . Find wavelength and frequency.
3. When the observer is relatively far from two sources,

$$
n \lambda=d \sin \theta
$$

The speakers are 1 m apart and the observer is 100 m away.
a. $\lambda=20 \mathrm{~cm}$. Find the angle where the observer will hear
i. $1^{\text {st }} \max$
iv. $4^{\text {th }}$ max
ii. $2^{\text {nd }} \max$
v. $5^{\text {th }} \max$
iii. $3^{\text {rd }}$ max
vi. $6^{\text {th }} \max$
b. How far must he walk from the central max to the first max?
c. Now the wavelength changes and the observer walks 120 m from the central max to the third max. Find the wavelength and frequency.

