Water and X

	Cp solid $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	Cp liquid $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	Cp gas $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	Heat of fusion $(\mathrm{J} / \mathrm{g})$	Heat of vaporization $(\mathrm{J} / \mathrm{g})$	MP $\left({ }^{\circ} \mathrm{C}\right)$	BP $\left({ }^{\circ} \mathrm{C}\right)$
X	0.8	1.1	0.9	210	1800	-30	70
Water	2.06	4.18	2.02	334	2260	0	100

1. If a 28 g sample of water absorbs 1230 J of heat when warming from $34^{\circ} \mathrm{C}$, what is its final temperature?
2. A piece of metal weighing 61 g at $98.0^{\circ} \mathrm{C}$ is put it into 100.0 mL of water (initially at $24^{\circ} \mathrm{C}$). The water reached a final temperature of $28^{\circ} \mathrm{C}$. Calculate the specific heat of the metal.
3. A sample of X weighing 20 g is at $65.0^{\circ} \mathrm{C}$ when it is dumped into 40 ml of water (initially at $20^{\circ} \mathrm{C}$). Find the final temperature.
4. How much energy is needed to vaporize 25 g of water?
5. How much energy does it take to warm 12 g of ice at $-40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$?
6. Draw the heating curve for $\# 5$.
7. 80 g of ice is at $0^{\circ} \mathrm{C}$. How much energy is needed to warm it to $40^{\circ} \mathrm{C}$?
8. How much water can be vaporized with 30 kJ of energy?
9. How much X can be vaporized with 30 kJ of energy?
10. What amount of energy is needed to warm 100 g of X from $10^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?
