Chem P Heat Review

1. Find the energy needed to warm 17 g of water from $10^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
2. If 70 g of $\mathrm{Q}\left(\mathrm{Cp}=1.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ is at $80^{\circ} \mathrm{C}$ is dropped into 50 g of water at $10^{\circ} \mathrm{C}$, find the final temperature.
3. 80 g of X at $-10^{\circ} \mathrm{C}$ is added to 60 g of water at $50^{\circ} \mathrm{C}$. The final temp is $41^{\circ} \mathrm{C}$. Find the specific heat of X.
4. How much energy is needed to melt 50 g of ice at its melting point?
5. It took 200,000 J to vaporize 150 g of Substance Z at its boiling point. Find the heat of vaporization of Z.
6. A student tried to find the heat of fusion of ice in a lab. He added 10 g of ice at $0^{\circ} \mathrm{C}$ to 50 g of water at $30^{\circ} \mathrm{C}$. The final temperature was $8^{\circ} \mathrm{C}$. Find his value for the heat of fusion and his percent error.
7. Find $\Delta \mathrm{H}_{\mathrm{rxn}}$ for $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
8. If 8 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ burn, how much heat is released?
9. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
a. 10 g sulfuric acid are used, find the heat released.
b. If 204 kJ are released, what mass of water is produced?
c. If 4 g NaOH are used and the heat produced is used to warm 100 g of water, find the change in temperature of the water.
10. Write the formation equation and show ΔH_{f} for
a. Carbon dioxide
b. Sodium hydroxide
c. Carbon monoxide
d. Aluminum oxide
11. Write a dissociation reaction for
a. NaCl
b. KOH
c. MgCl_{2}
12. Find the heat released when 10 g of CO_{2} is formed from its pure elements.
13. Find the heat released when 10 g of NaOH dissociates.
14. Find $\Delta \mathrm{H}_{\mathrm{rxn}}$ for the dissociation of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.

For $\mathrm{H}_{2} \mathrm{O}, \mathrm{Cp}_{\mathrm{s}}=2.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{Cp}_{\mathrm{I}}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{Cp}_{\mathrm{g}}=2.02 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{H}_{\text {fus }}=334 \mathrm{~J} / \mathrm{g}$, $H_{\text {vap }}=2260 \mathrm{~J} / \mathrm{g}$

Chem P Heat Review

15. If 10 g of ammonium nitrate dissolved in 50 g of water at $40^{\circ} \mathrm{C}$, find the final temperature of the water.
16. Find the heat released when one mole of MgO forms from its elements.
17. If 200 kJ of heat is released when MgO is formed as in \#16, what mass of MgO forms?
18. 4 g of magnesium chloride are dissolved in 90 g of water at $20^{\circ} \mathrm{C}$. Find the final temperature of the water.
19. $2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=.2785 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}$ Find $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{C}_{3} \mathrm{H}_{6}$.
20. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=+250 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}$
Find $\Delta \mathrm{H}_{\mathrm{f}}$ for CaSO_{4}.
21. For each curve, find
i. $\Delta \mathrm{H}_{\mathrm{rxn}}$
ii. $\Delta \mathrm{H}_{\mathrm{rxn}}$ reverse
iii. Activation energy
iv. Activation energy of the reverse rxn
v. Catalyzed activation energy
vi. Catalyzed activation energy of the reverse rxn

22. The heat produced from the burning of methane $\left(\mathrm{CH}_{4}\right)$ is used to take 2000 g of water from $10^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$. What mass of methane is burned?

For $\mathrm{H}_{2} \mathrm{O}, \mathrm{Cp}_{\mathrm{s}}=2.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{Cp}_{\mathrm{I}}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{Cp}_{\mathrm{g}}=2.02 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{H}_{\text {fus }}=334 \mathrm{~J} / \mathrm{g}$, $H_{\text {vap }}=2260 \mathrm{~J} / \mathrm{g}$

