Equilibrium Review

1. Write the equilibrium expression for the reaction shown below.
$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \leftarrow \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
2. Initially in a 3 L container, there are 1.2 mol of NO_{2} and $0.96 \mathrm{~mol}_{2} \mathrm{O}_{4}$. Find all equilibrium concentrations.
$2 \mathrm{NO}_{2} \leftrightarrow \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} \quad \mathrm{~K}_{\mathrm{c}}=0.5$
3. For the following reaction, NO is brown and all else are clear. Tell the shift (right or left) and the color change. $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \Delta \mathrm{H}=+55 \mathrm{~kJ}$
a) NH_{3} is removed
d) Pressure is decreased
b) $\mathrm{H}_{2} \mathrm{O}$ is added
e) Volume is decreased
c) Temperature is decreased
f) Catalyst is added
g) He is added
4. If at equilibrium in a 4 L container there are 1.6 mol of $A, 0.8 \mathrm{~mol}$ of B, and 1.2 mol of each C and D, a) Find K. b) If now there is a new equilibrium with $[A]=0.6 \mathrm{M},[\mathrm{C}]=0.3 \mathrm{M}$, and $[\mathrm{D}]=0.1 \mathrm{M}$, find $[\mathrm{B}]$ $4 A+2 B \leftrightarrow C+3 D$
5. Find the $\% \mathrm{HCl}$ turned to product if initially there is $0.6 \mathrm{M} \mathrm{HCl} . \mathrm{K}=2$. $2 \mathrm{HCl}_{(\mathrm{g})} \leftrightarrow \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
6. Initially in a 3 L container, there are 1.2 mol of NO_{2}. At equilibrium, there are 0.9 moles of NO_{2}. A) Find Kc . B) Find Kp at $25^{\circ} \mathrm{C}$.

$$
2 \mathrm{NO}_{2} \leftrightarrow \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}
$$

7. Initially, $[A]=[B]=1.2 \mathrm{M}$, and $[\mathrm{C}]=0.4 \mathrm{M}$.

$$
2 A+3 B \leftrightarrow 4 C \quad K_{c}=2 \times 10^{2}
$$

a) Find Q
b) Which way does the reaction shift to attain equilibrium?
8. A sample of ammonium carbonate is heated and decomposes as shown below. At a certain temperature, K_{p} is 0.048 . Find the total pressure.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})} \leftarrow \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$
9. Given: $\mathrm{H}_{2}+\mathrm{CO}_{2} \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \mathrm{K}=2$

Find
a) K for $3 \mathrm{H}_{2}+3 \mathrm{CO}_{2} \leftrightarrow 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}$
b) K for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \longleftrightarrow \rightarrow \mathrm{H}_{2}+\mathrm{CO}_{2}$

