Equilibrium Review

- 1. Write the equilibrium expression for the reaction shown below. $4NH_{3(g)} + 5O_{2(g)} \leftrightarrow 4NO_{(g)} + 6H_2O_{(l)}$
- Initially in a 3 L container, there are 1.2 mol of NO₂ and 0.96 mol N₂O₄. Find all equilibrium concentrations. 2NO₂ ←→ N₂O₄ K_c = 0.5
- 3. For the following reaction, NO is brown and all else are clear. Tell the shift (right or left) and the color change.

 $4NH_{3(g)} + 5O_{2(g)} \leftrightarrow 4NO_{(g)} + 6H_2O_{(I)} \Delta H = +55 \text{ kJ}$

- a) NH_3 is removed
- b) H_2O is added
- c) Temperature is decreased

- d) Pressure is decreased
- e) Volume is decreased
- f) Catalyst is added
- g) He is added
- 4. If at equilibrium in a 4 L container there are 1.6 mol of A, 0.8 mol of B, and 1.2 mol of each C and D, a) Find K. b) If now there is a new equilibrium with [A] = 0.6 M, [C] = 0.3 M, and [D]= 0.1 M, find [B]
 4A + 2B ← C + 3D
- 5. Find the % HCl turned to product if initially there is 0.6 M HCl. K = 2. $2HCI_{(g)} \leftarrow \rightarrow H_{2(g)} + CI_{2(g)}$
- Initially in a 3 L container, there are 1.2 mol of NO₂. At equilibrium, there are 0.9 moles of NO₂. A) Find Kc. B) Find Kp at 25°C.
 2NO₂ ←→ N₂O₄
- 7. Initially, [A] = [B] = 1.2 M, and [C] = 0.4 M. 2A + 3B $\leftarrow \rightarrow$ 4C K_c = 2 x 10²
 - a) Find Q
 - b) Which way does the reaction shift to attain equilibrium?
- 8. A sample of ammonium carbonate is heated and decomposes as shown below. At a certain temperature, K_P is 0.048. Find the total pressure.

 $(\mathsf{NH}_4)_2\mathsf{CO}_{3(s)} \leftrightarrow 2\mathsf{NH}_{3(g)} + \mathsf{H}_2\mathsf{O}_{(g)} + \mathsf{CO}_{2(g)}$

9. Given: H₂ + CO₂ ← → H₂O + CO K = 2 Find
a) K for 3H₂ + 3CO₂ ← → 3H₂O + 3CO
b) K for H₂O + CO ← → H₂ + CO₂