AP Chem Heat Review

	MP $\left({ }^{\circ} \mathrm{C}\right)$	BP $\left({ }^{\circ} \mathrm{C}\right)$	Cp_{s} $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	Cp_{l} $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	$\mathrm{Cpg}_{\mathrm{g}}$ $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$	$\mathrm{H}_{\text {fus }}$ $(\mathrm{J} / \mathrm{g})$	$\mathrm{H}_{\text {vap }}$ $(\mathrm{J} / \mathrm{g})$
$\mathrm{H}_{2} \mathrm{O}$	0	100	2.06	4.18	2.02	334	2260
Q	-40	80	1.0	1.2	0.9	250	1400

1. Define the following terms
a. Isolated system
e. Heat of hydration
b. Open system
f. Heat of fusion
c. Closed system
g. Heat of formation
d. Lattice energy
2. What is the first law of thermodynamics?
3. What is the proper way to mix acid and water? Why?
4. Given the following data:

$$
\begin{array}{ll}
2 \mathrm{O}_{3(\mathrm{~g})} \cdots>3 \mathrm{O}_{2(\mathrm{~g})} & \Delta \mathrm{H}^{\circ}=.327 \mathrm{~kJ} \\
\mathrm{O}_{2(\mathrm{~g})} \cdots>2 \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}^{\circ}=+195 \mathrm{~kJ} \\
\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \cdots>\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Delta \mathrm{H}^{\circ}=-199 \mathrm{~kJ}
\end{array}
$$

Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} \cdots>\mathrm{NO}_{2(\mathrm{~g})}$
5. Find the energy needed to warm 17 g of water from $10^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
6. Find the energy needed to warm 30 g of Q from $-50^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
7. If 70 g of Q is at $79^{\circ} \mathrm{C}$ when it is dropped into 50 g of water at $10^{\circ} \mathrm{C}$, find the final temperature.
8. 80 g of X at $-10^{\circ} \mathrm{C}$ is added to 60 g of water at $50^{\circ} \mathrm{C}$. The final temp is $41^{\circ} \mathrm{C}$. Find the specific heat of X.
9. It took 200 kJ to vaporize 150 g of Substance Z at its boiling point. Find the heat of vaporization of Z.
10. A student tried to find the heat of fusion of ice in a lab. He added 10 g of ice at $0^{\circ} \mathrm{C}$ to 50 g of water at $30^{\circ} \mathrm{C}$. The final temperature was $8^{\circ} \mathrm{C}$. Find his value for the heat of fusion and his percent error.
11. If 8 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ burn, how much heat is released?
12. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

If 4 g NaOH are used and the heat produced is used to warm 100 g of water, find the change in temperature of the water.
13. Write the formation equation and show ΔH_{f} for
a. Carbon dioxide
b. Sodium hydroxide
14. Find the heat released when 10 g of CO_{2} is formed.
15. Find the heat absorbed or released when 10 g of NaOH dissociates.
16. If 10 g of ammonium nitrate dissolved in 50 g of water at $40^{\circ} \mathrm{C}$, find the final temperature of the water.
17. If 200 kJ of heat is released when MgO is formed, what mass of MgO forms?
18. 4 g of magnesium chloride are dissolved in 90 g of water at $20^{\circ} \mathrm{C}$. Find the final temperature of the water.
19. $\quad 2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-2785 \mathrm{~kJ} / \mathrm{mol} \mathrm{I}_{\mathrm{rxn}}$ Find $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{C}_{3} \mathrm{H}_{6}$.
20. For each curve, find
i. $\Delta \mathrm{H}_{\mathrm{rxn}}$
ii. $\Delta \mathrm{H}_{\mathrm{rxn}}$ reverse
iii. Activation energy
iv. Activation energy of the reverse rxn
v. Catalyzed activation energy
vi. Catalyzed activation energy of the reverse rxn

21. The heat produced from the burning of methane $\left(\mathrm{CH}_{4}\right)$ is used to take 2000 g of water from $10^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$. What mass of methane is burned?
22. 5 g of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, are burned and the energy released melts 3000 g of ice. Find
a. The molar heat of combustion of octane
b. $\Delta \mathrm{H}_{f}$ for octane
23. Know how to read phase diagrams

